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Production of superpositions of coherent states in traveling optical fields with inefficient photon
detection
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We develop an all-optical scheme to generate superpositions of macroscopically distinguishable coherent
states in traveling optical fields. It nondeterministically distills coherent-state superpositions (CSS’s) with large
amplitudes out of CSS’s with small amplitudes using inefficient photon detection. The small CSS’s required to
produce CSS’s with larger amplitudes are extremely well approximated by squeezed single photons. We
discuss some remarkable features of this scheme: it effectively purifies mixed initial states emitted from
inefficient single-photon sources and boosts negativity of Wigner functions of quantum states.
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I. INTRODUCTION

The Schrodinger’s cat paradox is a famous illustration of
the principle of superposition in quantum theory [1]. It poses
the question of whether a classical object on the macroscopic
level can be in a state of quantum superposition. The com-
ponent states composing such a superposition should give
macroscopically distinct measurement outcomes [2,3]. A su-
perposition of two optical coherent states with sufficiently
large amplitudes of a m-phase difference is considered a re-
alization of such a macroscopic superposition and often
called a “Schrodinger cat state.”

Recently, such coherent-state superpositions (CSS’s) in
free propagating optical fields have been found to be useful
for various applications to quantum information processing
[4-13]. Quantum teleportation [4—8], quantum computation
[9-11], entanglement purification [12] and concentration [5],
error correction [13], and remote entangling [8] have been
extensively studied with CSS’s. In particular, it was shown
that quantum computation can be realized using only linear
optics and photon counting, given prearranged CSS’s as re-
sources [10,11]. In this approach, a qubit is defined to be a
superposition of two coherent states, and all four Bell states
can be perfectly well discriminated by photon counting mea-
surements and a beam splitter [5,12]. This enables one to
construct quantum gates in a relatively simple way based on
the teleportation protocol [11]. The amplitudes of coherent
states for qubits and resource CSS’s should be carefully cho-
sen for efficiency of quantum information processing. The
CSS’s of amplitude a>2 are required as resources for effi-
cient quantum computation with simple optical networks
[11].

It is known to be extremely hard to generate a free propa-
gating CSS using current technology. It is well known that
the CSS can be generated from a coherent state by a nonlin-
ear interaction in a Kerr medium [14]. However, Kerr non-
linearity of currently available nonlinear media is extremely
small compared with the level required to generate a CSS
and attenuation in the media is not negligible [15].

Some alternative methods have been studied to generate a
superposition of macroscopically distinguishable states based
upon conditional measurements [16,17]. A crucial drawback
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of these schemes is that highly efficient photon detection is
necessary. The schemes of both Song et al. [16] and Dakna
et al. [17] require photon number resolving measurements,
which is extremely demanding using current technology.
Some other schemes [18] require many single-photon detec-
tors instead of one n-photon counting detector. Even though
it is known that many perfect single-photon detectors enable
one to perform nearly perfect n-photon counting, such a
scheme would suffer a similar difficulty due to detection in-
efficiency of many single-photon detectors. Many perfect de-
tectors used to produce macroscopic superpositions can be
replaced with two n-photon Fock states and two perfect de-
tectors [19]. This employs another unavailable factor (two
n-photon Fock states) by current technology. A modified
scheme [20] of Ref. [16] suggested by Montina can be robust
to detection inefficiency under certain conditions where suc-
cess probability is extremely low and amplitudes of the gen-
erated CSS’s are small such as @<<1. None of the above
schemes based on conditional measurements are currently
feasible to generate CSS’s with high fidelity, the main diffi-
culty being the unavoidable inefficiency of photon detection.

Cavity quantum electrodynamics has been studied to en-
hance nonlinear effects to generate macroscopic superposi-
tions [21]. Some success has been reported in creating such
superposition states within high-Q cavities in the microwave
[22] and optical [23] domains. However, most of the
schemes suggested for quantum information processing with
coherent states [4—13] require free propagating CSS’s.

Recently, it was shown that free propagating optical
CSS’s with amplitude up to @=2.5 and fidelity F>0.99 can
be generated with squeezed single photons and simple all-
optical operations [24], where neither efficient photon detec-
tion nor x'* nonlinear interactions are required. It was also
found to be resilient to photon production inefficiency to
some extent as its first step effectively purifies initial mixed
states emitted from an inefficient single photon source [24].
In a more general sense, these examples reveal that the first
excited energy eigenstates can be converted to a superposi-
tion of macroscopically distinguishable states by linear op-
erations and projections.

In this paper, we extensively analyze the scheme in Ref.
[24] and find that its purification effects can last for further
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steps. The nondeterministic CSS amplification scheme is
found to boost the nonclassicality of quantum states: even
very small amount of negativity can be drastically increased
by this process. It is also pointed out that the single-photon
source is not necessary to obtain squeezed single photons if
another nondeterministic technique, photon subtraction [25]
as demonstrated in a recent experiment [26], is employed.

This paper is organized as follows. In Sec. II, We briefly
define and discuss the CSS as a macroscopic superposition
state with Schrodinger’s cat paradox. In Sec. III, it is shown
that a CSS with a small coherent amplitude (a¢<1.2) and
high fidelity (F>0.99) can be deterministically generated by
squeezing a single photon. The discussion is motivated by
the approach of Ref. [16]. The Wigner functions of squeezed
single photons and CSS’s are analytically obtained, and they
are compared to visualize the effects of squeezing on single
photons. In Sec. IV, we fully analyze and discuss the CSS
amplification scheme with beam splitters, auxiliary coherent
fields, and inefficient detectors. Section V combines the two
ideas from Secs. III and IV to produce CSS’s with amplitude
a>2. Weak squeezing, beam mixing with an auxiliary co-
herent field, and photon detecting with threshold detectors
are enough to generate a CSS with amplitude up to a=2.5
and high fidelity (F>0.99) given a single-photon source.
Pufication effects for an inefficient single-photon source are
another remarkable aspect of our scheme, which will be dis-
cussed in Sec. VI particularly for multiple iterations of the
process. We conclude with some final remarks in Sec. VII. A
recent experiment by Wenger et al. [26] is briefly addressed
from the viewpoint of CSS generation. We emphasize that
single-photon sources are not necessary to generate CSS’s of
a>?2 employing the photon subtraction technique with our
amplification scheme.

II. SUPERPOSITIONS OF COHERENT STATES AS
MACROSCOPIC SUPERPOSITIONS—CAN THEY BE
CALLED “SCHRODINGER CATS”?

A CSS can be defined as
ICSS (@) =N (a)(|a) + £'?|]- a)), (1)

where N (a) is a normalization factor, |+a) is a coherent
state of amplitude +«, and ¢ is a real local phase factor. The
amplitude « is assumed to be real for simplicity without loss
of generality. In this paper we refer to the magnitude of « as
the size of the CSS. Note that CSS’s such as |CSS.(a))
=N.(a)(|a)£|~a)) are called even and odd CSS’s respec-
tively, because the even (odd) CSS always contains an even
(odd) number of photons.

In Schrédinger’s paradox, a classical object (cat) is in a
superposition of two macroscopically distinguishable states
(alive and dead). Leggett and Garg have shown the incom-
patibility between quantum-mechanical prediction and mac-
roscopic realism for a macroscopic superposition state [2].
The same kind of discussions have been made by Reid to
show violation of Bell’s inequality when local realism is
macroscopically defined [3]. A CSS is in a macroscopic su-
perposition state when its amplitude is appropriately large. It
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is often referred to as a “Schrodinger cat state” or simply
“cat state” albeit there exists some dispute over the term.

There are probably two conspicuous characteristics of
CSS’s which may justify the title Schrodinger cat states.
First, coherent states are known as the most classical states
among pure states. The coherent states were originally sug-
gested by Schrodinger as a quantum analogy of classical par-
ticles [27]. A classical particle can be represented as a point
in the phase space while it is prohibited by the uncertainty
principle for a quantum state. A coherent state provides the
most pointlike description of a quantum particle in the phase
space among all quantum states. Furthermore, the coherent
states do not change their localized shapes as they move in a
harmonic oscillator potential. Their Wigner functions are
positive definite and their P function exists even though they
are 6 functions [28].

Second, two coherent states are macroscopically distin-
guishable when they are well separated in the phase space.
Homodyne detection can be considered a macroscopic mea-
surement as it does not resolve individual quanta (photon).
The error probability P, of discriminating two coherent
states |a) and |-a) by a homodyne detection is [29]

— 1
P, =Erf(\2a) - . 2)

where Erf(x) is the error function. The error probability P,
corresponds to the probability of a wrong discernment by the
homodyne detection due to the overlap between the two co-
herent states. The probability P, is extremely small as P,
<3.2X 107 for a>2. In such a case, a CSS in Eq. (1) can
be considered a superposition between two macroscopically
distinguishable states of a classical system.

The first characteristic explained above could be more or
less weaker than the second one as a justification for
Schrodinger cat states being an alternative title of CSS’s. The
coherent states are, of course, still far from typical classical
objects. It was shown that quantum key distribution using
coherent states and homodyne measurements is secure
against any individual eavesdropping attack [30]. It has also
been argued that a weak measurement of the squared quadra-
ture observable may yield negative values for coherent states
[31].

The virtual cat in Schrédinger’s paradox is, to be more
precise, entangled with a microscopic quantum object while
a CSS in Eq. (1) is in a single mode superposition. However,
an entangled coherent state

[ECS) | )| B) + €'~ )|~ B) 3)

can be simply generated by dividing a CSS using a beam
splitter. Such an entanglement in Eq. (3) of macroscopically
distinguishable states is perhaps more closely aligned with
Schrédinger’s original concept [1].

We have shown that the error probability of discriminat-
ing between two coherent states, |a) and |-a), is extremely
small for «>2, which justifies the CSS as, at least, a mac-
roscopic superposition state. This value (a>2) is also appro-
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FIG. 1. A schematic of the simplification of the CSS generation.
PC represents photon counting and HD represents homodyne detec-
tion. (a) Conditional production using QND with photon counting,
(b) conditional production using QND with homodyne detection,
and (C) deterministic production only by squeezing a single photon.
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priate for quantum computation using optical coherent states
[10]. Therefore, we are particularly interested in generating
CSS’s of @>2 in this paper.

III. GENERATION OF SMALL COHERENT-STATE
SUPERPOSITIONS

There have been some trials to generate macroscopic su-
perpositions using the optical parametric amplifier and a
single-photon source [16,32]. In this section, we show how a
previous scheme [16] to generate macroscopic superposi-
tions can be significantly simplified so that small CSS’s with
high fidelity can be deterministically generated simply by
squeezing single photons (see Fig. 1).

A. Simplified generation of small coherent-state superpositions

The key idea presented in this section is motivated by the
scheme described in [16]. This scheme uses a nonlinear cou-
pling between two optical modes which realizes a quantum

nondemolition (QND) measurement on the Y quadrature of
one mode. This is done by coupling the mode containing the
signal to another ancillary mode as described in [33]. We
define the quadrature operators of a single mode in terms of

the usual creation and annihilation operators as X=d+a' and
Y=—-i(G-a") so that [X,Y]=2i and hence

VIAX (AT = 1. (4)

So as to avoid confusion between the two quantized modes
of the EM field in the QND appratus, the mode which the
QND measurement is performed is called the signal mode
and the mode it interacts with to assist with the measurement
is called the meter mode. Also the operators associated with
the observables of these modes are labeled with subscript s
for signal and m for meter. The device described in [33] uses
the two polarization modes of a single spatial mode as the
signal and meter modes. For example, the horizontal polar-
ization might contain the signal and vertical polarization the
meter. The meter mode is usually assumed to be prepared in
the vacuum state. The two polarization modes are mixed by
a waveplate by an angle 6. Then two-mode squeezing is
performed between the two polarization modes by a x*) non-
linear crystal. The squeezing parameter r is determined by
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the power applied to a pump beam which creates a squeezed
vacuum in the absence of any input signal. Finally the polar-
izations are mixed by a waveplate by the same angle 6. The
evolution through this device is unitary and can be repre-

sented by a unitary operator U. When the squeezing param-
eter and waveplate mixing angle are related by tanhr
=sin 26 (called the QND condition) then the quadrature op-
erators transform as [16]

X, (X, \ A1 =2sinhr)\[ X,
S =Uul U )
Xm 0 Xm i 0 1 Xm i
Y, YN A1 0\[Y,
S =utl ol S ()
Ym 0 Ym i Zsinhr 1 Ym i

From these relations it is possible to see that the f/s operator
is left unchanged through the apparatus but the Y,, operator
is mixed with the )A/S operator. This allows information about

the ¥ quadrature of the signal to be gathered from the meter
mode while leaving the signal itself undisturbed. Note that to

satisfy the uncertainty relation from Eq. (4) the X quadrature
of the signal output is not identical to its input.

In attempting to generate CSS’s, the scheme in [16] sug-
gests preparing the signal (and meter) in the vacuum state.
Then apply the QND apparatus just described and perform a
photon number measurement on the meter. The signal output
is only accepted when a predefined number of photons is
registered in the measurement. It is shown heuristically in
[16] that one would expect a CSS to be generated when r
> 1. When an odd number of photons is counted in the meter
mode the output is close to an odd CSS and when an even
number of photons is counted the output is close to an even
CSS.

The scheme described in [16] relies on photon counting
measurements to post-select the desired output state. This
ability to conditionally select the output induces the required
nonlinearity. However, this requires efficient detection and
photon number measurements which are difficult to imple-
ment. One possible resolution to this would be to use detec-
tion schemes which can be made to perform efficiently when
post-selecting the output state. We suggest here to use homo-
dyne detection which might be performed with much higher
efficiency than photon counting measurements.

Homodyne measurements are effectively a measurement

of the X or ¥ quadratures depending on the phase of a refer-
ence signal. The eigenvalue spectrum of these operators is
continuous which makes post-selection on a particular value
have little meaning as that one value is infinitesimally small
in the set of all possible values. For example, one could

measure X and select the result for eigenvalue zero but one
could never be sure that the result was precisely zero. To
circumvent this problem one can use the technique shown in
[35] which accepts events within a given window of possible
values and rejects all others.
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In order to produce states similar to those in [16] by ho-
modyne post-selection we suggest preparing the signal mode
in a Fock state, then post-select by performing a homodyne
measurement on the meter mode after the QND apparatus.
The condition to accept the output of the signal is if the
measurement was in the range (-8, §) where & is some small
constant. We provide a heuristic description in a similar fash-
ion to that in [16] but perform a more complete analysis on a
simplification that naturally arises when trying to write down
the output state.

The heuristic description proceeds by expanding the
signal-mode photon number operator in terms of the quadra-
ture operators—i.e.,

B 7
a= e )
where the subscript s represents the fact that the operator
represents the signal mode and the subscript i for input. The

QND apparatus leaves the Y quadrature of the signal un-
changed by Eq. (6), so

X5 Yo,
ﬁji:f*_f_?' (8)

Here the subscript o represents the operator for the output
mode. Now the X quadrature of the signal transforms as

X,,=X,; -2 sinh rX,,; 9)
and the ¥ quadrature of the meter transforms as

Y,,=Y,;+2sinhrY,, (10)

where the subscript m represents the meter mode. We now

require a post-selective measurement on Y mo- We use a semi-
classical approach to complete this heuristic description by
converting operators back into classical variables. In terms of
the semiclassical quadrature variables, the effect of the post-
selective measurement can be included by setting Y,,,=0. So
we can write the signal output as

1

Y :Y,-:——Y ‘N
so o 2 sinhr ™

(11)
From this equation we can see that after post-selection the Y
quadrature of the signal output is a scaled form of the Y
quadrature to the meter input. Substituting this expression
into Eq. (7) and rearranging for the signal output X quadra-
ture one obtains

Y, \?
Xs0= + 4nSi+2_(.—WH) —ZSinthm,». (12)
2 sinh r

Here we consider ny; the semiclassical form of the signal
input photon number operator which will only take on inte-
ger values. The meter input is a vacuum state and hence the
X and Y quadratures contain Gaussian noise. The signal input
contains a definite photon number. So the first term under the
square root will act like a constant. The second term will
have some scaled Gaussian random noise and so will the
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term outside the square root. However, the multivalued na-
ture of the square root gives the two-peaked behavior re-
quired. This completes our heuristic description.

In this paper we will not perform an in-depth analysis of
this device in full to rigorously confirm the results of the
heuristic argument just given. However, a complete analysis
has been performed which confirms this description [34].
Here we will analyze a simplification of this device which
has similar functionality and will prove fruitful towards
achieving our goal of a simplified experiment.

One can show that the unitary operator which generates
the operator transformation equations (5) and (6) of the QND
apparatus is

U= e sinh(r))A(m{/x‘ (13)

Now consider this operator acting on the initial state where
the signal is in a Fock state and the meter is in the vacuum
state—i.e.,

U[n),|0),,. (14)

Inserting two instances of the identity, one expanded over the
eigenstates of X,, and the other eigenstates of Y, we have

| ] anermatiiy i o as)

When expressions for the inner products are substituted, this
equation becomes

NnNU'f dxmf dy?elz Slnh(r)xmy.Ye_y_y/an(ys)e_xm/20|y‘v>|_xm>,
(16)

where N, and N, are normalization factors for the nth pho-
ton term and a Gaussian with standard deviation o, respec-
tively, and H,,(y,) is the nth Hermite polynomial. The process

of projecting onto the f’m:O state can be included by taking
the inner product of this state with the state on the meter
mode alone dY (y,,=0|. This leaves us with a (y,,=0x,,)
inside the integral. This term is e**n=1. Hence the post-
selected output state is

* * iy 2 2
dYN,N, f dx,, f dye S 0Pse 2 H, (v,) ey,

(17)
When the terms involving x,, are grouped together and fac-

tored by completing the square and the integration over x,, is
performed one is left with

dYan dyse_[”“” sinhz(r)]yf/ZHn(ys) |ys> ) (1 8)

This can be a written a little clearer if we set «
=/1+40 sinh?(r). Hence the signal output is
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dYn;, J dy,e™ @ 2H, (y)]y,). (19)

This state is not normalized as the process which we have
chosen to generate it is nondeterministic. For the special case
of n=1 the normalized state is

3 o0
2
,’_f dySe_(Ky‘r) /2H1 (ys) |ys> s (20)

and as the Hermite polynomial H,(y,) is linear, a k can be
moved from under the square root to inside the integral to
give

K

Tf dyse (rev) /ZHI(KyS)|yS>7 (21)
NTTJ —o

which we state is just a rescaling (or squeezing) of the mo-
mentum wave function of a single photon. So the case of a
single-photon input into the QND device with the projective
measurement described above is equivalent to squeezing a
single-photon Fock state.

B. Squeezed single photons and ideal CSS’s

We have thus been guided to comparing a single-mode
squeezed-single-photon state with an odd CSS. The single-
mode squeezing operator is

S(r) = @1, (22)

where r is the squeezing parameter and a is the annihilation
operator. This operator reduces quantum noise of a vacuum
state in the phase quadrature by a factor of ¢™". When the
squeezing operator is applied to a single photon the resultant
state can be expanded in terms of photon number states as

[

i )|1>_2 (tanh )" V2n+1)!
' ~ = (coshr)¥? 2!

Pn+1).  (23)

The state contains only odd photon numbers and has coeffi-
cients decaying exponentially as n increases in a similar
fashion to an odd CSS. The fidelity of this state with an odd
CSS is

FIG. 2. The fidelity between an odd CSS and
squeezed single photon. The odd CSS is ex-
tremely well approximated by the squeezed
single photon for a small coherent amplitude, «
=<1.2.

2a’exp[a’(tanh r—1)]
cosh r)3(1 —exp[-2a°])°
(24)

F(r,a) = {CSS_(a)[S(r|1)]* = (

If an odd CSS of size « is desired, then the fidelity is maxi-
mized when r satisfies

1 —
coshr=1/=+=\9+4a". (25)
2 6

Figure 2 shows the maximized fidelity on the y axis plotted
against a range of possible values for « for the desired odd
CSS. Some example values are F=0.999 99 for amplitude
a=1/2, F=0.9998 for a=1/y2, and F=0.997 for a=1,
where the maximizing squeezing parameters are r=0.083, r
=0.164, and r=0.313, respectively. These values correspond
to V=0.85, V=0.72, and V=0.53, where V is the variance of
the squeezed quadrature variable. First note that for « very
close to zero the fidelity approaches unity. When a—0, r

—0, and hence the squeezing operator S(r) approaches the
identity transformation. An odd CSS with « very close to
zero has a significant contribution from a single photon and
very little from higher odd photon numbers. This is the rea-
son for the high fidelity as « tends to zero. The fidelity re-
mains high for & near zero as one can match the three-photon
contribution to the CSS by the squeezing operator while still
being able to neglect higher-order photon number terms.
Eventually as « increases, higher photon numbers cannot be
matched and so as « tends to infinity, the fidelity tends to
Zero.

The role of squeezing on single photons becomes clear by
comparing Wigner functions of the squeezed single photons
and CSS’s. The Wigner function of a squeezed single photon
can be obtained from its characteristic function

. O 1
X:() =TS (e =7 = exp| = (e,
+e‘2’7]i2) (1 —e2’173+e_2’7]i2). (26)

The Wigner function is then
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F_IG. 3. (Color online) The Wigner functions of odd CSS’s (left) and squeezed single photons (right). The amplitudes of CSS’s are (a)
1/42, (b) 1, and (c) 2. The degrees of squeezing of squeezed single photons are (a) 0.164, (b) 0.313, and (c) 0.853, which are chosen for
maximum fidelity with CSS’s. It is evident from the figure that only small amount of squeezing makes a single photon a good approximate

CSS.

1 . 2
W)= — f eI x(pd® = "exp[-2(e¥z; + e 7¥2})]
a
X (4e¥ 7’ +4e7 22 - 1). (27)

The Wigner function of the CSS is obtained by the same
method as

—2|z|?
Wi(z) = —z{e_zaz(e_4azr +e*%r) £ 2 cos 4az),
(1 +e72%)

(28)

where W(z) [W_(z)] is the Wigner function of the even
[odd] CSS. The Wigner functions of odd CSS’s with ampli-
tudes 1/42, 1, 2 and the Wigner functions of corresponding
squeezed single photons are plotted in Fig. 3. It shows that
only small amount of squeezing makes a single photon a

good approximation of the odd CSS. If squeezing is too
large, the CSS and squeezed single photon will become dif-
ferent.

IV. NONDETERMINISTIC CSS AMPLIFICATION
PROCESS

In this section, we show that an arbitrarily large CSS can
be produced out of arbitrarily small CSS’s using the simple
experimental setup depicted in Fig. 4. Let us first illustrate
this procedure with a simple example. Suppose that one has
a collection of identical small odd CSS’s with known ampli-
tude «;. Two of the small CSS’s are selected and are incident
onto a 50:50 beam splitter, BS1, which acts on two coherent
states |a) and |B) as
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FIG. 4. A schematic of the nondeterministic CSS-amplification
process. Two small CSS’s at modes a and b are added to produce a
larger CSS at mode f by a conditional measurement using detectors
A and B. See text for details.

B
r— + /—
V2 42 7

The two small CSS’s are then transformed at BS1 as

BS1

), By —

V2

a B
_\E+ r>g. (29)

BSI
= -
|CSS—(ai)>a|CSS—(ai)>b—> |O>f(|\"204i>g + |_ V2ai>g)

- (|\‘Eai>f+ - \“ﬂzai>f)|0>g
o [0),]CSS, (\2a)),
—|CSS,(\2a))J0),,  (30)

where the normalization factors are omitted on the right-
hand side. One can then say that if one could « condition on
detecting |0> a larger CSS with amplitude \201 would be
obtained at mode f. However, the nonzero overlap between
the vacuum and the even CSS in Eq. (30) will make it im-
possible to perform unambiguous measurements. The error
due to this overlap is not negligible because the initial am-
plitude «; is supposed to be a small value. Note that if the
parity of the initial CSS’s are different, an unambiguous con-
ditioning is possible using an ideal photodetector. The two
small CSS’s of different parity are transformed at BS1 as

|CSS_())),|CSS.())

BS1 _ —
— [0)/CSS_(\2a)), + [CSS_(x2a))|0),. (31

where the normalization factor is omitted again on the right-
hand s1de Since the overlap between the vacuum and odd
CS can be condi-
tionally produced regardless of the value of «; by detecting
no photon at mode g. Even in this case, however, the result-
ing states of conditional measurements will be highly sensi-
tive to detection inefficiency for small ¢;. An additional step
therefore is required to unambiguously discriminate between
the vacuum and coherent states |+ \2a> with inefficient de-
tectors. Another 50:50 beam splitter, BSZ_mlxes the field at
mode g and an auxiliary coherent state [\2q;), as
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/ \

|cssm)>

FIG. 5. A schematic of successive applications of the CSS am-
plification processes. CA represents the CSS amplification process
depicted in Fig. 4. As the first step, eight CSS’s of initianl amplitude
«; are fed into the four CA processes. If all the eight detectors in the
four CA processes click, the resulting states are selected for the
second step and so on. In this example, 14 detectors and 14 beam
splitters are required with 7 auxiliary coherent states to distill a CSS
of amplitude 2y2¢q; from smaller CSS’s of amplitude a;.

BS2

= =
IBS1)/o[N2a;)— [0) (|21 [0} 2 + [0} 20)0) = (N2e),

+ - \2a) )l @l ado (32)

where [BS1),, represents the right-hand side of Eq. (30) and
the normalization factor is omitted. Finally, photodetectors A
and B are set to detect photons at modes ¢1 and 2. The
remaining state at mode f is selected only when both the
detectors detect any photon(s) at the same time. In this case,
it is obvious that the right-hand side of Eq. (32) is reduced to
a larger CSS’s. If either of the detectors fails to click, the
resulting state is discarded.

This process can be successively applied until a CSS of a
sufficiently large amplitude is obtained. Suppose that an even
CSS with amplitude a>?2 is required while the initial am-
plitude of small odd CSS’s is @;=1. One may consider an
experimental setup depicted in Fig. 5 to obtain a CSS of the
required amplitude. Here we refer to the CSS amplification
process depicted in Fig. 4 as “CA.” First, four pairs of odd
CSS’s (i.e., eight odd CSS’s) with amplitude «;=1 should be
fed into four CA processes simultaneously as shown in Fig.
5. If the first step in Fig. 5 is successful—i.e., all the eight
detectors in the first four CA processes click—two pairs of
even CSS’s with amplitude y2a; will be generated out of the
four pairs of smaller CSS’s of amplitude «; fed into the first
four CA processes. In the second step, two CA processes are
performed with the two pairs of even CSS’s generated from
the first step. Note that the auxiliary coherent states for the
second step should be |2a;)’s. Through this second stage, one
pair of even CSS’s of amplitude 2¢; can be gained from the
two pairs of even CSS’s with amplitude \2e,. Finally, an
even CSS with amplitude 2v2a,;(=2.83) can be generated by
the third step which is only a single CA process with an
appropriate auxiliary state. An CSS of an arbitrarily larger
amplitude can be produced by increasing the number of the
steps from any smaller CSS’s. Of course, the success prob-
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ability will rapidly drop down and the required resources will
exponentially increase as the number of steps increases un-
less quantum optical memory is available.

The CA process described above can be generalized for
arbitrarily small CSS’s with known amplitudes as already
shown in Fig. 4. Suppose two small CSS’s, |CSS(a)) and
|CSS 4(B)), with amplitudes « and B. The reflectivity r and
transmitivity ¢ of BS1 are set to r=B/Va?+B* and t
=a/\a*+ 82, where the action of the beam splitter is repre-
sented by

B, y(r.0|a) | Blta+ rB) |- ra+1B),. (33)

The other beam splitter BS2 is a 50:50 beam splitter (r=t¢
=1/+2) regardless of the conditions and the amplitude y of
the auxiliary coherent field is determined as

y=2apNao? + 3. (34)

The two beam splitters BS1 and BS2 then transform the two
small CSS’s with the auxiliary state as

8¢ \/5’ \“”2 ab Vr'a2 + BZ’ \’/az + BZ

X|CSS ,()),/CSS 4(B))sl V) = {(|,4> + e 9|- A))

2 2
Y\ | E =B 5
x| =) £ )+ 0)lV2
\,2> \5> S >| 2y
o — B
- AB >|\57>|0>}

—_— .
where A=1\a’+ % Here, the measurement operator P,
can be represented as

Piyn=(1=10)0),; ® (1-[0)0]),,. (36)

It is then obvious from Eq. (35) that the resulting state for
mode f by the “click-click” event at f1 and 72 becomes
|CSS§E+Q(A)>O<|A)+ei(“’+¢>|—A), whose coherent amplitude
A=\a?+ 8 is larger than both « and B. The relative phase
of the resulting CSS is the sum of the relative phases of the
input CSS’s. The success probability P, 4(«a,B) for a single
iteration of the process above is simply calculated as

P¢,¢(a,,3) = <q)|ﬁt1,t2|q)>
(1- e‘zazﬁzl(“2+ﬂ2))2[l +cos(p + ¢)e‘2(“2+ﬂ2)]
2(1 + cos gpe‘zaz)(l + cos d)e_zﬁz)

=), (35)
fitln2

+e'?

s

which is plotted for a number of different combinations in
Fig. 6. The success probabilities depend on the type of CSS’s
(odd or even) used and they approach 1/2 as the amplitudes
of the initial CSS’s becomes large. It is interesting to note
that the probability P, . (a,a) for two identical odd CSS
inputs is always larger than ~0.214 regardless of the value
of a as shown in Fig. 6. This is due to the fact that each odd
CSS contains at least one photon no matter how small its
amplitude is. Multiple iterations will rapidly reduce the suc-
cess probability. For example, if one needs to distill a CSS of
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FIG. 6. The success probabilities of the CSS-amplifying process
in Fig. 4 for the input fields of two identical odd CSS’s (solid line),
two identical even CSS’s (dashed line), and even and odd CSS’s
(dotted line).

a=2 out of 4 CSS’s of a=1 (a=1/\s“§), the success prob-
ability will be ~0.027 (4 X 107%). If a CSS of a=2 is desired
out of 16 odd CSS’s of a=1/2, the success probability will
be only 2 X 10713, However, if quantum memory is available,
one can temporarily hold the output state upon success wait-
ing for the remainder of the trials to give a successful result.
This avoids the exponential scaling of the overall probability
of success and for the =2 case just considered the average
number of steps is 1731. The inefficiency of photodetectors
will also decrease the success probability while it does not
affect the quality of the obtained CSS’s.

It is worth noting that not only an arbitrary large even
CSS but also an arbitrarily large odd CSS can be obtained
out of small odd CSS’s. If a larger odd CSS needs to be
produced, a larger even CSS obtained from a collection of
initial odd CSS’s and a single initial odd CSS can be fed into
a CA process so that a larger odd CSS can be obtained. If the
even CSS of amplitude 212 obtained and the initial odd cat
of amplitude 1 are used as the two input states in Fig. 4, an
odd CSS of amplitude 3 will then be obtained.

We have pointed out that a small CSS approaches a single
photon while a larger CSS is a superposition of macroscopi-
cally distinguishable states which can be considered a real-
ization of Schrodinger’s paradox. This means that, in prin-
ciple, our scheme distills a superposition of macroscopically
distinguishable states from microscopic quantum states. It
also increases nonclassical features of quantum states. The
negativity of Wigner functions is an indicator of the nonclas-
sical features of a quantum state. Since an even CSS ap-
proaches the vacuum state as its amplitude gets smaller and
the Wigner function of the vacuum state is positive definite,
the maximum negative value of the Wigner function is small
for a small even CSS. In this regime of a small amplitude,
the Wigner function of an even CSS looks almost like a
Gaussian state. Figure 7 shows how the maximum negative
value of the Wigner function of an even CSS increases as our
amplification process is iterated.

V. AMPLIFYING SQUEEZED SINGLE PHOTONS FOR
LARGER COHERENT-STATE SUPERPOSITIONS

In our earlier discussions, it was shown that the fidelity
between a squeezed single photon and an ideal small cat is
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FIG. 7. section of the Wigner function for an initial even CSS of
amplitude 1/2 (solid line), the resulting CSS after the first iteration
(dashed line), and the resulting state after the second iteration (dot-
ted line). The maximum negative values are shown in the figure.
One can see a radical increase of negativity of the Wigner function.

extremely high. Therefore, it can be conjectured that a larger
CSS distilled from squeezed single photons by our scheme
will also be very close to an ideal CSS. In what follows, we
will show that this conjecture is right for «=<2.5 by analyti-
cal and numerical approximations. We first choose the initial
coherent amplitude as «;=1/v2. The fidelity of the initial
CSS, which is the squeezed single photon, is then F
=0.999 78 for the appropriate squeezing parameter r
=0.163 725.

The squeezed single photon can be represented in terms
of an ideal CSS and error components as S(r)|l)
oc|CSS_(1/ V2)+ 8V13)+69)|5)+ 87[7)+- -+, where the error
terms are

e"40.162278 2k + 1) ! =k ! ]

5(2k+1):
212k +1) (e = 1)

(37)

It can be simply checked that 6§°)=0.012 966 9 is the domi-
nant error term and &Y exponentially decreases for k>5.
The state only with 6%, N(|CSS_(1/+2))+ &8%|5)), where N
is the normalization factor, will give a fidelity £'=0.999 83
for the odd CSS |CSS_(1/+2)). In other words, the state only
with the dominant error term can be a good approximation of
the squeezed single photon for a weak squeezing. We there-
fore use

S(I1) = [ W) = NACSS_(112)) + 8J5)  (38)

as the initial input state, where r=0.163 725, §,=0.0147, and
N; is a normalization factor. The initial fidelity F; between
|W,) and the ideal odd CSS is made, F;=0.999 78, which is
exactly same as the case of a squeezed single photon. The
resulting state is obtained as

A Al I
W (1) pi0= Ptl,tZB;v;iB(lz;}l;|\Pi>a|\Pi>h| V2ay).,  (39)

Payr= T ol P )XW )]s (40)

where Tr;; ,, denotes a partial trace of modes ¢1 and 72, a
subscript (n) indicates the number of the iterative steps made

to amplify the CSS, and Bl =l§(1/\5, 1/ \E).
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When each of the detectors detects only one photon, it is
straightforward to calculate the resulting state

Al (1)) = [CSS,(1)) - 1.115,0.828[4) - 0.561]6)),
(41)

where error terms smaller than 1/3 of the dominant error
term have been discarded as they exponentially decay. Con-
sidering the normalization, the fidelity of the state (41) is
calculated to be 0.999 74. Note that about 60% of all the
successful simultaneous clicks at detectors A and B corre-
spond to this case, where the probability can be calculated by
P =(nl(m|p(,|n)m). About 30% of the successful clicks

correspond to the cases that detector A detects two photons
while detector B detects one photon or that A detects one
while B detects two photons. We can make a same approxi-
mation for these cases and the fidelity is 0.999 75. On the
other hand, the highest overlap with a CSS of a=1 that can
be obtained by simply squeezing a single photon is F
=0.997 11; thus, a clear improvement has been obtained.

In order to calculate multiple iterations we need to use
numerical techniques. We are using coherent states of some
bounded coherent amplitude and superpositions there of.
Provided the coherent amplitudes are not small, the most
significant contributions to these states are Fock states of low
number. For computations here the lowest 30 Fock states
were used. This provides a very good approximation for co-
herent states with @ =<2.5. All 29 possible “click” events are
included for all detectors.

If one wished to create a CSS with a particular a with n
CSS-amplification steps, then initial CSS’s with a;=a/2"
are required. As the number of steps increases the required «;
decreases. When generating a larger CSS out of the
squeezed-single-photon states the fidelity maximizes for a
particular number of iterations. Figure 8 shows the maximum
possible fidelity using this process in (a) and the number of
steps in (b) against the desired « in the CSS’s. For example,
four iterations starting from the initial amplitude a;=1/2 are
required to gain the maximum fidelity F=0.995 for a=2. It
is evident from Fig. 4 that high fidelity, £>0.99, can be
obtained up to a=2.5. The error rate for discrimination be-
tween coherent states with a=+2.5 via a classical measure-
ment (homodyne detection) is only 3 X 107,

VI. PURIFICATION EFFECTS OF THE CSS-
AMPLIFICATION PROCESS

The single photons required for our scheme could be gen-
erated conditionally from a downconverter [36]. This is a x®
process (like squeezing) and does not require photon number
resolving detection. It should be noted that current technol-
ogy does not produce pure single-photon states; the single
photon is always in a mixture with the vacuum as

plOX0] + (1 = p)|1X1], (42)
where p is the inefficiency of the photon production. Hence
the squeezed-single-photon state will also be a mixture with
a squeezed vacuum as
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pS(M|0XO|ST(r) + (1 = p)SM|ST(r).  (43)

However, an interesting aspect of our scheme is that it may
be somewhat resilient to the photon production inefficiency
because its first iteration purifies the mixed CSS’s while am-
plifying them. The initial input states for the CSS-
amplification process from the imperfect single-photon
source are

Pape =1 = DS (S| ® |S(S1| + P2ISoHSol @ [So)(Sol
+p(1 = p)(|SoX(Sol @ [S{(S1|+ S| @ [So)Sol) s
® (|7 (44)

where |S,)=S5(r)|0) and |S,)=S(r)|1). Here, the terms with p>
and p(1—p) are undesired error terms where either (or both)
of the single photons is missing. Note that the initial ampli-
tude is required to be small to produce a larger CSS with
high fidelity. Provided such a small amplitude, input states
incident onto the beam splitters in our experimental setup
contain approximately only two (or slightly more than two)
photons. In such cases the probability of simultaneous clicks
at detectors A and B in Fig. 4 will significantly decrease
when any of the single photons is missing. In other words,
the undesired cases will rarely be selected for the next itera-
tion of the amplification process. We have obtained numeri-
cal results for the initial amplitude a;=1/2 as follows by the
methods that we have already explained. If p=0.4, the fidel-
ity of the initial CSS, which is a mixture with a squeezed
vacuum, is F'=0.60 but it will become F=0.89 by the first
iteration. Thus a larger CSS of significantly high fidelity is
produced. If p=0.25 (p=0.05), the fidelity of the initial CSS
is F=0.750 (F=0.950) but becomes F=0.941 (F=0.990) by
the first iteration.

The purification by the first iteration is directly evident by
the probability argument, but what remains to be shown is if
this effect is strong enough for purification to still be

25

achieved for multiple iterations. For a double iteration, four
input CSS’s of a;=1/2 would be required to obtain an output
CSS of a=1. The numerical results of the second iteration
presented in Fig. 9 show that the improvements of fidelity
obtained by the first step can remain for further iterations. In
Fig. 9(a), the purity of the input state (solid line) and the
purity of the output state after the first (dot-dashed line) and
second (dashed line) iterations have been plotted as functions
of the photon production inefficiency p. Note that purity is
defined here as Tr{p?}. Figure 9(b) shows the fidelity of the
input state when compared with the ideal CSS of a=1/2
(solid line), the fidelity of the output state after the first it-
eration compared with the CSS of a=1/ V2 (dot-dashed line),
and the fidelity of the output state (dashed line) compared
with the ideal CSS of a=1. When p=0 the purity and fidelity
are high as the input states themselves are pure and the out-
put fidelity is expected to be high. The fidelity has decreased
compared with the result after the first iteration but it is still
higher than the initial fidelity. For example, the fidelity will
change from 0.60 to 0.89 for the first iteration and finally to
0.72 for the second iteration when p=0.4. For the range of
probabilities shown here (p € [0,0.5]) there is always an im-
provement in purity and fidelity.

There exists an alternate way of achieving the same out-
put state using the same input CSS’s but using a different
arrangement of amplification procedures. Two a=1/2 odd
input CSS’s could be amplified to generate one even «
=1/2 CSS. Then this state could be combined with another
a=1/2 odd CSS to create a @=3/4 odd CSS. Then finally
this state could be combined with another a=1/2 odd CSS
to generate the a=1 even CSS output. One might expect that
the presence of the a=+3/4 odd CSS could make some dif-
ferences in purity and fidelity by this method. However, the
plots for the final output state which we have obtained by the
same numerical technique are identical in nature to those of
Fig. 9. So the purifying effects of this procedure do not seem
to depend on the way in which the output state is generated.
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VII. REMARKS

We have studied a simple all-optical scheme to generate a
linear superposition of macroscopically distinguishable co-
herent states in a propagating optical field [24]. In stark con-
trast to all previous schemes, this scheme requires neither
x® nonlinearity nor efficient photon detection to generate a
superposition of macroscopically distinguishable states. Fur-
thermore, it exhibits some resilience to photon production
inefficiency because it purifies initial mixed states. We have
found that these purification effects can last for multiple it-
erations. The nondeterministic CSS amplification scheme has
been proved to boost the nonclassicality of quantum states:
even a very small amount of negativity can be drastically
increased by this process. This scheme nondeterministically
generates CSS’s with amplitude a>?2. However, it should be
noted that a nondeterministic CSS source is useful enough
for quantum information processing [10,11].

In the CSS-amplification process, the zero-amplitude co-
herent states that occur in the detection modes in Eq. (32)
may be slightly different from zero because of imperfect
mode matching at beam splitters. This will lead to a small
probability of accepting the wrong state. Good mode match-
ing is a requirement in any linear optical network where one
wishes to measure manifestly quantum-mechanical effects.
Highly efficient mode matching of a single photon from
parametric down-conversion and a weak coherent state from
an attenuated laser beam at a beam splitter has been experi-
mentally demonstrated using optical fibers [38]. Such tech-
niques could be employed for the implementation of our
scheme.

The dark count rate of photodetectors will affect the fidel-
ity of the CSS’s. Currently, highly efficient detectors have
relatively high dark count rates while less efficient detectors
have very low dark count rates [37]. We emphasize again
that our scheme does not require highly efficient detectors
because the inefficiency of the detectors does not affect the
quality of CSS’s even though it decreases the success prob-

ability. Silicon avalanche photodiodes operating at the visible
wavelength have relatively high efficiency and a small dark
count rate, which is preferred in our proposal.

Once free propagaing CSS states are generated, they can
be detected by homodyne measurements, which can be
highly efficient in quantum optics experiments. Interference
fringes will appear as a signature of the CSS’s in the statis-
tics of the photocurrent at the detectors.

Finally, we note that there is an alternative method to
obtain a squeezed-single-photon even without a single-
photon source. It is perhaps not surprising that a squeezed
single photon can be obtained by adding a photon to a
squeezed vacuum as a'S(r)[0)=sinh rS(r)|1). However, an
interesting observation is that a squeezed single photon can
also be obtained by subtracting a photon from a squeezed
vacuum. This can be shown by applying the annihilation
operator to a squeezed single photon:

aS(r)|0y = cosh rS(r)|1). (45)
It was already pointed out that a photon-subtracted or
photon-added squeezed vacuum state is similar to a CSS
[25]. Recently, a free-propagating non-Gaussian optical state
which is close to a squeezed single photon in Eq. (45) was
experimentally deomonstrated by Wenger et al. [26]. In their
experiment, the single-photon subtraction was approximated
by a beam splitter of low reflectivity and a single-photon
detector. Such an experiment could be immediately linked to
our suggestion to experimentally generate a larger CSS. One
can then generate a CSS of a>2 using our scheme without
a single-photon source.
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